资源类型

期刊论文 322

年份

2023 26

2022 35

2021 31

2020 43

2019 13

2018 12

2017 14

2016 16

2015 18

2014 14

2013 9

2012 19

2011 15

2010 9

2009 7

2008 7

2007 8

2006 3

2005 3

2004 2

展开 ︾

关键词

人工神经网络 2

压力容器技术 2

土壤 2

基质吸力 2

微波遥感 2

抑爆抗爆 2

抗生素 2

横沙东滩 2

膨胀土 2

重金属 2

风化砂 2

DX桩 1

HY-2 卫星地面应用系统 1

SWAT模型 1

业务运行模型 1

二维层状结构 1

互花米草 1

井塔冬期快速施工成套技术 1

井帮位移 1

展开 ︾

检索范围:

排序: 展示方式:

Hydraulic fracturing pressure of concentric double-layered cylinder in cohesive soil

《结构与土木工程前沿(英文)》 2021年 第15卷 第4期   页码 937-947 doi: 10.1007/s11709-021-0754-4

摘要: This study aims to investigate hydrofracturing in double-layered soil through theoretical and experimental analysis, as multilayered soils where the difference in mechanical properties exists are generally encountered in practical engineering. First, an analytical solution for fracturing pressure in two different concentric regions of soil was presented based on the cavity expansion theory. Then, several triaxial hydraulic fracturing tests were carried out to validate the analytical solution. The comparison between the experimental and analytical results indicates the remarkable accuracy of the derived formula, and the following conclusions were also obtained. First, there is a linear relationship between the fracturing pressure and confining pressure in concentric double-layered cohesive soil. Second, when the internal-layer soil is softer than the external-layer soil, the presence of internal soil on the fracturing pressure approximately brings the weakening effect, and the greater strength distinction between the two layers, the greater the weakening effect. Third, when the internal-layer soil is harder than the external-layer soil, the existence of the internal-layer soil has a strengthening effect on the fracturing pressure regardless of the proportion of internal-layer soil. Moreover, the influence of strength distinction between the two layers on the fracturing pressure is significant when the proportion of internal-layer soil is less than half, while it’s limited when the proportion is more than half. The proposed solution is potentially useful for geotechnical problems involving aspects of cohesive soil layering in a composite formation.

关键词: hydraulic fracturing pressure     layered     cavity expansion theory     triaxial fracturing test     cohesive soil    

A simplified method for the determination of vertically loaded pile-soil interface parameters in layeredsoil based on FLAC

Jiu-jiang WU,Yan LI,Qian-gong CHENG,Hua WEN,Xin LIANG

《结构与土木工程前沿(英文)》 2016年 第10卷 第1期   页码 103-111 doi: 10.1007/s11709-015-0328-4

摘要: The numerical analysis of pile-soil interaction commonly requires a lot of trial works to determine the interface parameters and the accuracy cannot be ensured normally. Considering this, this paper first conducts a sensitivity analysis to figure out the influence of interface parameters on the bearing behavior of a single pile in sand. Then, a simplified method for the determination of pile-soil interface parameters in layered soil is proposed based on the parameter studies. Finally, a filed loading test is used for the validation of the simplified method, and the calculated results agree well with the monitoring data. In general, the simplified method proposed in this paper works with higher accuracy and consumes less time compared with the traditional trial works, especially on the determinations of interfacial cohesive and interfacial friction angle.

关键词: determination of interface parameters     pile-soil interaction     FLAC3D     sensitivity analysis     layered soil    

New pseudo-dynamic analysis of two-layered cohesive-friction soil slope and its numerical validation

Suman HAZARI, Sima GHOSH, Richi Prasad SHARMA

《结构与土木工程前沿(英文)》 2020年 第14卷 第6期   页码 1492-1508 doi: 10.1007/s11709-020-0679-3

摘要: Natural slopes consist of non-homogeneous soil profiles with distinct characteristics from slopes made of homogeneous soil. In this study, the limit equilibrium modified pseudo-dynamic method is used to analyze the stability of two-layered soil slopes in which the failure surface is assumed to be a logarithmic spiral. The zero-stress boundary condition at the ground surface under the seismic loading condition is satisfied. New formulations derived from an analytical method are proposed for the predicting the seismic response in two-layered soil. A detailed parametric study was performed in which various parameters (seismic accelerations, damping, cohesion, and angle of internal friction) were varied. The results of the present method were compared with those in the available literature. The present analytical analysis was also verified against the finite element analysis results.

关键词: layered soil     limit equilibrium method     seismic analysis     damping     PLAXIS    

Stability analysis of layered slopes in unsaturated soils

Guangyu DAI; Fei ZHANG; Yuke WANG

《结构与土木工程前沿(英文)》 2022年 第16卷 第3期   页码 378-387 doi: 10.1007/s11709-022-0808-2

摘要: This study presents stability analyses of layered soil slopes in unsaturated conditions and uses a limit equilibrium method to determine the factor of safety involving suction stress of unsaturated soil. One-dimensional steady infiltration and evaporation conditions are considered in the stability analyses. An example of a two-layered slope in clay and silt is selected to verify the used method by comparing with the results of other methods. Parametric analyses are conducted to explore the influences of the matric suction on the stability of layered soil slopes. The obtained results show that larger suction stress provided in unsaturated clay dominates the stability of the layered slopes. Therefore, the location and thickness of the clay layer have significant influences on slope stability. As the water level decreases, the factor of safety reduces and then increases gradually in most cases. Infiltration/evaporation can obviously affect the stability of unsaturated layered slopes, but their influences depend on the soil property and thickness of the lower soil layer.

关键词: slope stability     suction stress     unsaturated soil     layered slope     limit equilibrium    

Shaking table testing of hard layered soil-pile-structure interaction system

LI Peizhen, REN Hongmei, LU Xilin, SONG Heping, CHEN Yueqing

《结构与土木工程前沿(英文)》 2007年 第1卷 第3期   页码 346-352 doi: 10.1007/s11709-007-0046-7

摘要: Shaking table tests on a dynamic interaction system of hard layered soil, pile foundation and frame structure were carried out. The earthquake damage of the superstructure and foundation was reproduced. Based on these tests, several key issues about the seismic response of the dynamic soil-structure interaction (SSI) system were studied. The natural frequency of the system was less than that of the structure on rigid foundation if the SSI is not taken into account, while its damping ratio was larger than that of the structure. The mode shape of the system was different from that of the structure on the fixed base in that there were rocking and swinging at the foundation. Magnification or reduction of vibration transferred by soil was related to soil characteristic, excitation magnitude, and so on. Generally, sand magnifies vibration, while viscous powder soil dampens vibration. The components of the acceleration response at the top of the superstructure were based on the relative magnitude of the rocking stiffness, the swing stiffness of the foundation and the stiffness of the super-structure. The multi-direction excitations have little effect on the key issues of the horizontal SSI.

关键词: super-structure     Generally     Magnification     frequency     different    

Quantification of seepage in a multi-layered disconnected river-aquifer system

Jiang LI, Haizhu HU, Xiaomin MAO, Yi LIU

《农业科学与工程前沿(英文)》 2017年 第4卷 第2期   页码 237-245 doi: 10.15302/J-FASE-2017135

摘要: Quantification of seepage in disconnected river-aquifer systems is significant for local water management and groundwater pollution control, especially in areas with water shortage or contamination. The vadose zone under riverbeds usually exhibits a multi-layered structure, particularly when paved with low permeability liners. To evaluate the impact of engineering solutions to seepage under such conditions, we proposed an approach by combining GIS and the minimum flux in saturation layer (MFSL) method. MFSL can calculate the stable seepage rate by assessing the dominant low permeability layers (including but not limited to the liners) in multi-layered disconnected river-aquifer systems. We used MFSL to calculate local seepage rate, and used GIS to extend the results to a regional scale. The reliability of MFSL is discussed by comparing the results with the double ring infiltration test, the numerical simulation by HYDRUS, and the methods of stream package in MODFLOW, including its improved form. A case study was conducted in the Yongding River with river-aquifer seepage calculated under various conditions, including different river water levels (i.e., under the designated water level, drought stage level, flood stage level and flood inundation level) and with/without low permeability liners (i.e., ecological membranes or geomembrane). Results showed that low permeability liners could greatly reduce the seepage rate. However, if an unlined inundation area exists, the seepage rate may increase greatly. The results indicated that the proposed method was reliable and convenient for calculating long-term, large area seepage in disconnected river-aquifer systems especially those paved with liners.

关键词: infiltration     low permeability liner     multi-layered porous media     river-aquifer seepage    

Crack evolution of soft–hard composite layered rock-like specimens with two fissures under uniaxial compression

《结构与土木工程前沿(英文)》 2021年 第15卷 第6期   页码 1372-1389 doi: 10.1007/s11709-021-0772-2

摘要: Acoustic emission and digital image correlation were used to study the spatiotemporal evolution characteristics of crack extension of soft and hard composite laminated rock masses (SHCLRM) containing double fissures under uniaxial compression. The effects of different rock combination methods and prefabricated fissures with different orientations on mechanical properties and crack coalescence patterns were analyzed. The characteristics of the acoustic emission source location distribution, and frequency changes of the crack evolution process were also investigated. The test results show that the damage mode of SHCLRM is related to the combination mode of rock layers and the orientation of fractures. Hard layers predominantly produce tensile cracks; soft layers produce shear cracks. The first crack always sprouts at the tip or middle of prefabricated fractures in hard layers. The acoustic emission signal of SHCLRM with double fractures has clear stage characteristics, and the state of crack development can be inferred from this signal to provide early warning for rock fracture instability. This study can provide a reference for the assessment of the fracture development status between adjacent roadways in SHCLRM in underground mines, as well as in roadway layout and support.

关键词: soft−hard composite layered rock mass     double cracks     crack evolution     acoustic emission     digital image correlation    

Hierarchically porous cellulose nanofibril aerogel decorated with polypyrrole and nickel-cobalt layered

《化学科学与工程前沿(英文)》 2023年 第17卷 第10期   页码 1593-1607 doi: 10.1007/s11705-023-2348-2

摘要: With increasing emphasis on green chemistry, biomass-based materials have attracted increased attention regarding the development of highly efficient functional materials. Herein, a new pore-rich cellulose nanofibril aerogel is utilized as a substrate to integrate highly conductive polypyrrole and active nanoflower-like nickel-cobalt layered double hydroxide through in situ chemical polymerization and electrodeposition. This ternary composite can act as an effective self-supported electrode for the electrocatalytic oxidation of glucose. With the synergistic effect of three heterogeneous components, the electrode achieves outstanding glucose sensing performance, including a high sensitivity (851.4 µA·mmol−1·L·cm−2), a short response time (2.2 s), a wide linear range (two stages: 0.001−8.145 and 8.145−35.500 mmol·L−1), strong immunity to interference, outstanding intraelectrode and interelectrode reproducibility, a favorable toxicity resistance (Cl), and a good long-term stability (maintaining 86.0% of the original value after 30 d). These data are superior to those of some traditional glucose sensors using nonbiomass substrates. When determining the blood glucose level of a human serum, this electrode realizes a high recovery rate of 97.07%–98.89%, validating the potential for high-performance blood glucose sensing.

关键词: cellulose nanofibril     aerogel     nickel-cobalt layered double hydroxide     polypyrrole     nonenzymatic glucose sensor    

Size effects in two-dimensional layered materials modeled by couple stress elasticity

Wipavee WONGVIBOONSIN, Panos GOURGIOTIS, Chung Nguyen VAN, Suchart LIMKATANYU, Jaroon RUNGAMORNRAT

《结构与土木工程前沿(英文)》 2021年 第15卷 第2期   页码 425-443 doi: 10.1007/s11709-021-0707-y

摘要: In the present study, the effect of material microstructure on the mechanical response of a two-dimensional elastic layer perfectly bonded to a substrate is examined under surface loadings. In the current model, the substrate is treated as an elastic half plane as opposed to a rigid base, and this enables its applications in practical cases when the modulus of the layer (e.g., the coating material) and substrate (e.g., the coated surface) are comparable. The material microstructure is modeled using the generalized continuum theory of couple stress elasticity. The boundary value problems are formulated in terms of the displacement field and solved in an analytical manner via the Fourier transform and stiffness matrix method. The results demonstrate the capability of the present continuum theory to efficiently model the size-dependency of the response of the material when the external and internal length scales are comparable. Furthermore, the results indicated that the material mismatch and substrate stiffness play a crucial role in the predicted elastic field. Specifically, the study also addresses significant discrepancy of the response for the case of a layer resting on a rigid substrate.

关键词: cosserat     layered materials     size effects     microstructure    

Mechanical responses of multi-layered ground due to shallow tunneling with arbitrary ground surface load

《结构与土木工程前沿(英文)》 2023年 第17卷 第5期   页码 745-762 doi: 10.1007/s11709-023-0935-4

摘要: An analytical model based on complex variable theory is proposed to investigate ground responses due to shallow tunneling in multi-layered ground with an arbitrary ground surface load. The ground layers are assumed to be linear-elastic with full-stick contact between them. To solve the proposed multi-boundary problem, a series of analytic functions is introduced to accurately express the stresses and displacements contributed by different boundaries. Based on the principle of linear-elastic superposition, the multi-boundary problem is converted into a superposition of multiple single-boundary problems. The conformal mappings of different boundaries are independent of each other, which allows the stress and displacement fields to be obtained by the sum of components from each boundary. The analytical results are validated based on numerical and in situ monitoring results. The present model is superior to the classical model for analyzing ground responses of shallow tunneling in multi-layered ground; thus, it can be used with assurance to estimate the ground movement and surface building safety of shallow tunnel constructions beneath surface buildings. Moreover, the solution for the ground stress distribution can be used to estimate the safety of a single-layer composite ground.

关键词: analytical model     mechanical response     multi-layered ground     shallow tunneling     ground surface load     complex variable solution    

Anisotropy of multi-layered structure with sliding and bonded interlayer conditions

Lingyun YOU, Kezhen YAN, Jianhong MAN, Nengyuan LIU

《结构与土木工程前沿(英文)》 2020年 第14卷 第3期   页码 632-645 doi: 10.1007/s11709-020-0617-4

摘要: A better understanding of the mechanical behavior of the multi-layered structure under external loading is the most important item for the structural design and the risk assessment. The objective of this study are to propose and develop an analytical solution for the mechanical behaviors of multi-layered structure generated by axisymmetric loading, and to investigate the impact of anisotropic layers and interlayer conditions on the multi-layered structure. To reach these objectives, first, according to the governing equations, the analytical solution for a single layer was formulated by adopting the spatial Hankel transform. Then the global matrix technique is applied to achieve the analytical solution of multi-layered structure in Hankel domain. The sliding and bonded interlayer conditions were considered in this process. Finally, the numerical inversion of integral transform was used to solve the components of displacement and stress in real domain. Gauss-Legendre quadrature is a key scheme in the numerical inversion process. Moreover, following by the verification of the proposed analytical solution, one typical three-layered flexible pavement was applied as the computing carrier of numerical analysis for the multi-layered structure. The results have shown that the anisotropic layers and the interlayer conditions significantly affect the mechanical behaviors of the proposed structure.

关键词: multi-layered structure     Hankel transformation     anisotropic     transversely isotropic     interlayer condition     Gauss-Legendre quadrature    

Synergistic effect of V and Fe in Ni/Fe/V ternary layered double hydroxides for efficient and durable

《化学科学与工程前沿(英文)》 2023年 第17卷 第1期   页码 102-115 doi: 10.1007/s11705-022-2179-6

摘要: High-performance and stable electrocatalysts are vital for the oxygen evolution reaction (OER). Herein, via a one-pot hydrothermal method, Ni/Fe/V ternary layered double hydroxides (NiFeV-LDH) derived from Ni foam are fabricated to work as highly active and durable electrocatalysts for OER. By changing the feeding ratio of Fe and V salts, the prepared ternary hydroxides were optimized. At an Fe:V ratio of 0.5:0.5, NiFeV-LDH exhibits outstanding OER activity superior to that of the binary hydroxides, requiring overpotentials of 269 and 274 mV at 50 mA·cm–2 in the linear sweep voltammetry and sampled current voltammetry measurements, respectively. Importantly, NiFeV-LDH shows extraordinary long-term stability (≥ 75 h) at an extremely high current density of 200 mA·cm–2. In contrast, the binary hydroxides present quick decay at 200 mA·cm–2 or even reduced current densities (150 and 100 mA·cm–2). The outstanding OER performance of NiFeV-LDH benefits from the synergistic effect of V and Fe while doping the third metal into bimetallic hydroxide layers: (a) Fe plays a crucial role as the active site; (b) electron-withdrawing V stabilizes the high valence state of Fe, thus accelerating the OER process; (c) V further offers great stabilization for the formed intermediate of FeOOH, thus achieving superior durability.

关键词: oxygen evolution reaction     electrocatalysts     ternary layered double hydroxides     long-term stability    

Layered alkali titanates (ATiO): possible uses for energy/environment issues

《能源前沿(英文)》 2021年 第15卷 第3期   页码 631-655 doi: 10.1007/s11708-021-0776-6

摘要: Uses of layered alkali titanates (A2TinO2n+1; Na2Ti3O7, K2Ti4O9, and Cs2Ti5O11) for energy and environmental issues are summarized. Layered alkali titanates of various structural types and compositions are regarded as a class of nanostructured materials based on titanium oxide frameworks. If compared with commonly known titanium dioxides (anatase and rutile), materials design based on layered alkali titanates is quite versatile due to the unique structure (nanosheet) and morphological characters (anisotropic particle shape). Recent development of various synthetic methods (solid-state reaction, flux method, and hydrothermal reaction) for controlling the particle shape and size of layered alkali titanates are discussed. The ion exchange ability of layered alkali titanate is used for the collection of metal ions from water as well as a way of their functionalization. These possible materials design made layered alkali titanates promising for energy (including catalysis, photocatalysts, and battery) and environmental (metal ion concentration from aqueous environments) applications.

关键词: layered alkali titanates     photocatalysis     hydrogen evdution     metal ions collection    

Bimetallic Ni-Fe catalysts derived from layered double hydroxides for CO methanation from syngas

Honggui Tang, Shuangshuang Li, Dandan Gong, Yi Guan, Yuan Liu

《化学科学与工程前沿(英文)》 2017年 第11卷 第4期   页码 613-623 doi: 10.1007/s11705-017-1664-9

摘要: Carbon deposition and sintering of active components such as nano particles are great challenges for Ni-based catalysts for CO methanation to generate synthetic natural gas from syngas. Facing the challenges, bimetallic catalysts with different Fe content derived from layered double hydroxide containing Ni, Fe, Mg, Al elements were prepared by co-precipitation method. Nanoparticles of Ni-Fe alloy were supported on mixed oxides of aluminium and magnesium after calcination and reduction. The catalysts were characterized by Brunner-Emmett-Teller (BET), X-ray diffraction, hydrogen temperature programmed reduction, inductively coupled plasma, X-ray photoelectron spectroscopy, transmission electron microscopy and thermogravimetric techniques, and their catalytic activity for CO methanation was investigated. The results show that the Ni-Fe alloy catalysts exhibit better catalytic performance than monometallic catalysts except for the Ni4Fe-red catalyst. The Ni2Fe-red catalyst shows the highest CO conversion (100% at 260–350 °C), as well as the highest CH selectivity (over 95% at 280–350 °C), owing to the formation of Ni-Fe alloy. In stability test, the Ni2Fe-red catalyst exhibits great improvement in both anti-sintering and resistance to carbon formation compared with the Ni0Fe-red catalyst. The strong interaction between Ni and Fe element in alloy and surface distribution of Fe element not only inhibits the sintering of nanoparticles but restrains the formation of Ni clusters.

关键词: methanation     layered double hydroxide     bimetal Ni-Fe alloy     sintering     carbon deposition    

Uncoupled state space solution to layered poroelastic medium with anisotropic permeability and compressible

Zhiyong AI, Wenze ZENG, Yichong CHENG, Chao WU

《结构与土木工程前沿(英文)》 2011年 第5卷 第2期   页码 171-179 doi: 10.1007/s11709-011-0103-0

摘要: This paper presents an uncoupled state space solution to three-dimensional consolidation of layered poroelastic medium with anisotropic permeability and compressible pore fluid. Starting from the basic equations of poroelastic medium, and introducing intermediate variables, the state space equation usually comprising eight coupled state vectors is uncoupled into two sets of equations of six and two state vectors in the Laplace-Fourier transform domain. Combined with the continuity conditions between adjacent layers and boundary conditions, the uncoupled state space solution of a layered poroelastic medium is obtained by using the transfer matrix method. Numerical results show that the anisotropy of permeability and the compressibility of pore fluid have remarkable influence on the consolidation behavior of poroelastic medium.

关键词: uncoupled state space solution     layered poroelastic medium     three-dimensional consolidation     anisotropic permeability     compressible pore fluid    

标题 作者 时间 类型 操作

Hydraulic fracturing pressure of concentric double-layered cylinder in cohesive soil

期刊论文

A simplified method for the determination of vertically loaded pile-soil interface parameters in layeredsoil based on FLAC

Jiu-jiang WU,Yan LI,Qian-gong CHENG,Hua WEN,Xin LIANG

期刊论文

New pseudo-dynamic analysis of two-layered cohesive-friction soil slope and its numerical validation

Suman HAZARI, Sima GHOSH, Richi Prasad SHARMA

期刊论文

Stability analysis of layered slopes in unsaturated soils

Guangyu DAI; Fei ZHANG; Yuke WANG

期刊论文

Shaking table testing of hard layered soil-pile-structure interaction system

LI Peizhen, REN Hongmei, LU Xilin, SONG Heping, CHEN Yueqing

期刊论文

Quantification of seepage in a multi-layered disconnected river-aquifer system

Jiang LI, Haizhu HU, Xiaomin MAO, Yi LIU

期刊论文

Crack evolution of soft–hard composite layered rock-like specimens with two fissures under uniaxial compression

期刊论文

Hierarchically porous cellulose nanofibril aerogel decorated with polypyrrole and nickel-cobalt layered

期刊论文

Size effects in two-dimensional layered materials modeled by couple stress elasticity

Wipavee WONGVIBOONSIN, Panos GOURGIOTIS, Chung Nguyen VAN, Suchart LIMKATANYU, Jaroon RUNGAMORNRAT

期刊论文

Mechanical responses of multi-layered ground due to shallow tunneling with arbitrary ground surface load

期刊论文

Anisotropy of multi-layered structure with sliding and bonded interlayer conditions

Lingyun YOU, Kezhen YAN, Jianhong MAN, Nengyuan LIU

期刊论文

Synergistic effect of V and Fe in Ni/Fe/V ternary layered double hydroxides for efficient and durable

期刊论文

Layered alkali titanates (ATiO): possible uses for energy/environment issues

期刊论文

Bimetallic Ni-Fe catalysts derived from layered double hydroxides for CO methanation from syngas

Honggui Tang, Shuangshuang Li, Dandan Gong, Yi Guan, Yuan Liu

期刊论文

Uncoupled state space solution to layered poroelastic medium with anisotropic permeability and compressible

Zhiyong AI, Wenze ZENG, Yichong CHENG, Chao WU

期刊论文